Investigation of possible microcavity effect on lasing threshold of nonradiative-scattering-dominated semiconductor lasers

نویسندگان

  • Sushil Kumar
  • Qing Hu
چکیده

The effect of enhanced rate of spontaneous emission on gain and lasing threshold of semiconductor microcavity lasers has not been discussed clearly. Some reports have suggested that the lasing threshold in microcavities could possibly be lowered due to the so-called Purcell effect. Here, we argue that gain in weakly coupled semiconductor cavities is a local phenomenon, which occurs due to stimulated emission induced by an electromagnetic excitation and remains unaffected by the cavity boundary conditions. Hence, the Purcell effect in microcavities filled uniformly with a gain medium should not lead to a reduction in the laser’s threshold pump density, provided radiative scattering is not the dominant relaxation mechanism in the excited state. A systematic experimental investigation of laser threshold in parallel-plate semiconductor microcavity terahertz quantum-cascade lasers of different dimensions was found to be in accordance with our arguments. VC 2012 American Institute of Physics. [doi:10.1063/1.3678595]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral linewidth in microcavity surface-emitting lasers

The Schawlow-Townes expression for the laser linewidth predicts a substantial cw linewidth enhancement in microcavity lasers, in which a large fraction of spontaneous emission is directed into the lasing mode, in contrast with conventional semiconductor lasers, in which the lasing mode accepts only a tiny fraction of spontaneously emitted photons. By performing a theoretical analysis of rigorou...

متن کامل

Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity

The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was...

متن کامل

Cavity Solitons in Driven VCSELs above Threshold

CSs have been theoretically predicted and recently experimentally demonstrated in broad area, vertical cavity driven semiconductor lasers (VCSELs) slightly below the lasing threshold. Above threshold, the simple adiabatic elimination of the polarization variable is not correct, leading to oscillatory instabilities with a spuriously high critical wave-number. To achieve real insight on the compl...

متن کامل

Investigation of whispering gallery mode dependence on cavity geometry of quasiperiodic photonic crystal microcavity lasers

Dodecagonal 12-fold quasiperiodic photonic crystal DQPC microcavity lasers sustaining whispering gallery mode WGM are fabricated. Lasing characteristics of DQPC D2 microcavity lasers are obtained and compared with triangular lattice D2 photonic crystal PC lasers, and ultralow threshold is obtained. The strong WGM mode dependence on 12 nearest airholes of DQPC D2 microcavity and its fabrication ...

متن کامل

Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si

We demonstrate the first electrically pumped quantum-dot micro-ring lasers epitaxially grown on (001) silicon. Continuous-wave lasing around 1.3 μm was achieved with ultra-low thresholds as small as 0.6 mA and maximum operation temperatures up to 100°C. OCIS codes: (230.5590) Quantum-well, -wire and -dot devices; (140.5960) Semiconductor lasers; (140.3948) Microcavity devices; (160.3130) Integr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012